
f11 – Sparse Linear Algebra f11dac

nag sparse nsym fac (f11dac)

1. Purpose

nag sparse nsym fac (f11dac) computes an incomplete LU factorization of a real sparse
nonsymmetric matrix, represented in coordinate storage format. This factorization may be used as
a preconditioner in combination with nag sparse nsym fac sol (f11dcc).

2. Specification

#include <nag.h>
#include <nagf11.h>

void nag_sparse_nsym_fac(Integer n, Integer nnz, double **a, Integer *la,
Integer **irow, Integer **icol, Integer lfill, double dtol,
Nag_SparseNsym_Piv pstrat, Nag_SparseNsym_Fact milu,
Integer ipivp[], Integer ipivq[], Integer istr[], Integer idiag[],
Integer *nnzc, Integer *npivm, NagError *fail)

3. Description

This routine computes an incomplete LU factorization (Meijerink and van der Vorst (1977)
and Meijerink and van der Vorst (1981)) of a real sparse nonsymmetric n by n matrix A.
The factorization is intended primarily for use as a preconditioner with the iterative solver
nag sparse nsym fac sol (f11dcc).

The decomposition is written in the form

A = M + R

where

M = PLDUQ

and L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with
unit diagonals, P and Q are permutation matrices, and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill lfill, or the drop tolerance dtol.

The argument pstrat defines the pivoting strategy to be used. The options currently available are
no pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete pivoting
by rows for sparsity and by columns for stability. The factorization may optionally be modified to
preserve the row-sums of the original matrix.

The sparse matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 of the
Chapter Introduction). The array a stores all the non-zero elements of the matrix A, while arrays
irow and icol store the corresponding row and column indices respectively. Multiple non-zero
elements may not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the CS representation of the matrix

C = L + D−1 + U − 2I.

Further algorithmic details are given in Section 6.3.

4. Parameters

n
Input: the order of the matrix A.
Constraint: n ≥ 1.

nnz
Input: the number of non-zero elements in the matrix A.
Constraint: 1 ≤ nnz ≤ n2.

[NP3491/6] 3.f11dac.1

nag sparse nsym fac NAG C Library Manual

a[la]
Input: the non-zero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column
indices are not permitted. The routine nag sparse nsym sort (f11zac) may be used to order
the elements in this way.
Output: the first nnz entries of a contain the non-zero elements of A and the next nnzc entries
contain the elements of the matrix C. Matrix elements are ordered by increasing row index,
and by increasing column index within each row

la
Input: the dimension of the arrays a, irow and icol as declared in the calling program. These
arrays must be of sufficient size to store both A (nnz elements) and C (nnzc elements); for this
reason the length of the arrays may be changed internally by calls to realloc. It is therefore
imperative that these arrays are allocated using the NAG macro NAG ALLOC and NOT
declared as automatic arrays.
Output: if internal allocation has taken place then la is set to nnz + nnzc, otherwise it remains
unchanged.
Constraint: la ≥ 2×nnz.

irow[la]
icol[la]

Input: the row and column indices of the non-zero elements supplied in a.
Constraints: irow and icol must satisfy the following constraints (which may be imposed by
a call to nag sparse nsym sort (f11zac)):

1 ≤ irow[i] ≤ n and 1 ≤ icol[i] ≤ n, for i = 0, 1, . . . ,nnz−1.

irow[i−1] < irow[i], or irow[i−1] = irow[i] and icol[i−1] < icol[i], for i = 1, 2, . . . ,nnz−1.
Output: the row and column indices of the non-zero elements returned in a.

lfill
Input: if lfill ≥ 0 its value is the maximum level of fill allowed in the decomposition (see
Section 6.2). A negative value of lfill indicates that dtol will be used to control the fill
instead.

dtol
Input: if lfill < 0 then dtol is used as a drop tolerance to control the fill-in (see Section 6.2);
otherwise dtol is not referenced.
Constraint: dtol ≥ 0.0 if lfill < 0.

pstrat
Input: specifies the pivoting strategy to be adopted as follows:

if pstrat = Nag SparseNsym NoPiv then no pivoting is carried out;

if pstrat = Nag SparseNsym UserPiv then pivoting is carried out according to the
user-defined input value of ipivp and ipivq;

if pstrat = Nag SparseNsym PartialPiv then partial pivoting by columns for stability
is carried out;

if pstrat = Nag SparseNsym CompletePiv then complete pivoting by rows for sparsity,
and by columns for stability, is carried out.

Suggested value: pstrat = Nag SparseNsym CompletePiv.
Constraint: pstrat = Nag SparseNsym NoPiv, Nag SparseNsym UserPiv,
Nag SparseNsym PartialPiv or Nag SparseNsym CompletePiv.

milu
Input: indicates whether or not the factorization should be modified to preserve row sums
(see Section 6.4):

if milu = Nag SparseNsym ModFact the factorization is modified (MILU);

if milu = Nag SparseNsym UnModFact then the factorization is not modified.
Constraint: milu = Nag SparseNsym ModFact or Nag SparseNsym UnModFact.

3.f11dac.2 [NP3491/6]

f11 – Sparse Linear Algebra f11dac

ipivp[n]
ipivq[n]

Input: if pstrat = Nag SparseNsym UserPiv, then ipivp[k − 1] and ipivq[k − 1] must specify
the row and column indices of the element used as a pivot at elimination stage k. Otherwise
ipivp and ipivq need not be initialized.
Constraint: if pstrat = Nag SparseNsym UserPiv, then ipivp and ipivq must both hold valid
permutations of the integers on [1,n].
Output: the pivot indices. If ipivp[k − 1] = i and ipivq[k − 1] = j then the element in row i
and column j was used as the pivot at elimination stage k.

istr[n+1]
Output: istr[i− 1], for i = 1, 2, . . . ,n holds the index of arrays a, irow and icol where row i of
the matrix C starts. istr[n] holds the address of the last non-zero element in C plus one.

idiag[n]
Output: idiag[i − 1], for i = 1, 2, . . . ,n holds the index in the arrays a, irow and icol which
holds the diagonal element in row i of the matrix C.

nnzc
Output: the number of non-zero elements in the matrix C.

npivm
Output: if npivm > 0 it gives the number of pivots which were modified during the
factorization to ensure that M exists. If npivm = −1 no pivot modifications were required,
but a local restart occurred (Section 6.3). The quality of the preconditioner will generally
depend on the returned value of npivm. If npivm is large the preconditioner may not be
satisfactory. In this case it may be advantageous to call nag sparse nsym fac again with an
increased value of lfill, a reduced value of dtol, or pstrat = Nag SparseNsym CompletePiv.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter milu had an illegal value.
On entry, parameter pstrat had an illegal value.

NE REAL INT ARG CONS
On entry, dtol = 〈value〉 and lfill = 〈value〉.
These parameters must satisfy dtol ≥ 0.0 if lfill < 0.

NE 2 INT ARG LT
On entry, la = 〈value〉 while nnz = 〈value〉.
These parameters must satisfy la ≥ 2 × nnz.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE INT 2
On entry, nnz = 〈value〉, n = 〈value〉.
Constraint: 1 ≤ nnz ≤ n2.

NE INVALID ROWCOL PIVOT
On entry, pstrat = Nag SparseNsym UserPiv, but one or both of the arrays ipivp and ipivq
does not represent a valid permutation of the integers in [1,n]. An input value of ipivp or
ipivq is either out of range or repeated.

NE NONSYMM MATRIX DUP
A non-zero matrix element has been supplied which does not lie within the matrix A, is out
of order or has duplicate row and column indices, i.e., one or more of the following constraints
has been violated:
1 ≤ irow[i] ≤ n, 1 ≤ icol[i] ≤ n, for i = 0, 1, . . . ,nnz−1.

[NP3491/6] 3.f11dac.3

nag sparse nsym fac NAG C Library Manual

irow[i − 1] < irow[i], or
irow[i − 1] = irow[i] and icol[i − 1] < icol[i], for i = 1, 2, . . . ,nnz−1.

Call nag sparse nsym sort (f11zac) to reorder and sum or remove duplicates.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments
The time taken for a call to nag sparse nsym fac is roughly proportional to nnzc2/n.

6.1. Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped
and the size of any modifications made to the pivot elements. If these sizes are small then the
computed factors will correspond to a matrix close to A. The factorization can generally be made
more accurate by increasing lfill, or by reducing dtol with lfill < 0.

If nag sparse nsym fac is used in combination with nag sparse nsym fac sol (f11dcc), the more
accurate the factorization the fewer iterations will be required. However, the cost of the
decomposition will also generally increase.

6.2 Control of Fill-in

If lfill ≥ 0 the amount of fill-in occurring in the incomplete factorization is controlled by limiting
the maximum level of fill-in to lfill. The original non-zero elements of A are defined to be of level
0. The fill level of a new non-zero location occurring during the factorization is defined as:

k = max(ke, kc) + 1,

where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If lfill < 0 the fill-in is controlled by means of the drop tolerance dtol. A potential fill-in element
aij occurring in row i and column j will not be included if:

|aij | < dtol × α,

where α is the maximum absolute value element in the matrix A.

For either method of control, any elements which are not included are discarded unless milu =
Nag SparseNsym ModFact, in which case their contributions are subtracted from the pivot element
in the relevant elimination row, to preserve the row-sums of the original matrix.

Should the factorization process break down a local restart process is implemented as described in
Section 6.3. This will affect the amount of fill present in the final factorization.

6.3 Algorithmic Details

The factorization is constructed row by row. At each elimination stage a row index is chosen. In
the case of complete pivoting this index is chosen in order to reduce fill-in. Otherwise the rows are
treated in the order given, or some user-defined order.

The chosen row is copied from the original matrix A and modified according to those previous
elimination stages which affect it. During this process any fill-in elements are either dropped
or kept according to the values of lfill or dtol. In the case of a modified factorization (milu =
Nag SparseNsym ModFact) the sum of the dropped terms for the given row is stored.

Finally the pivot element for the row is chosen and the multipliers are computed for this elimination
stage. For partial or complete pivoting the pivot element is chosen in the interests of stability as
the element of largest absolute value in the row. Otherwise the pivot element is chosen in the order
given, or some user-defined order.

3.f11dac.4 [NP3491/6]

f11 – Sparse Linear Algebra f11dac

If the factorization breaks down because the chosen pivot element is zero, or there is no non-zero
pivot available, a local restart recovery process is implemented. The modification of the given
pivot row according to previous elimination stages is repeated, but this time keeping all fill. Note
that in this case the final factorization will include more fill than originally specified by the user-
supplied value of lfill or dtol. The local restart usually results in a suitable non-zero pivot arising.
The original criteria for dropping fill-in elements is then resumed for the next elimination stage
(hence the local nature of the restart process). Should this restart process also fail to produce
a non-zero pivot element an arbitrary unit pivot is introduced in an arbitrarily chosen column.
nag sparse nsym fac (f11dac) returns an integer parameter npivm which gives the number of these
arbitrary unit pivots introduced. If no pivots were modified but local restarts occurred npivm =
−1 is returned.

6.4 Choice of Parameters

There is unfortunately no choice of the various algorithmic parameters which is optimal for all
types of matrix, and some experimentation will generally be required for each new type of matrix
encountered.

If the matrix A is not known to have any particular special properties the following strategy is
recommended. Start with lfill = 0 and pstrat = Nag SparseNsym CompletePiv. If the value
returned for npivm is significantly larger than zero, i.e., a large number of pivot modifications were
required to ensure that M existed, the preconditioner is not likely to be satisfactory. In this case
increase lfill until npivm falls to a value close to zero.

If A has non-positive off-diagonal elements, is non-singular, and has only non-negative elements in
its inverse, it is called an ‘M-matrix’. It can be shown that no pivot modifications are required in
the incomplete LU factorization of an M-matrix (Meijerink and van der Vorst (1977)). In this case a
good preconditioner can generally be expected by setting lfill = 0, pstrat = Nag SparseNsym NoPiv
and milu = Nag SparseNsym ModFact.

Some illustrations of the application of nag sparse nsym fac (f11dac) to linear systems arising from
the discretization of two-dimensional elliptic partial differential equations, and to random-valued
randomly structured linear systems, can be found in Salvini and Shaw (1996).

6.5 References

Meijerink J and van der Vorst H (1977) An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162.

Meijerink J and van der Vorst H (1981) Guidelines for the usage of incomplete decompositions
in solving sets of linear equations as they occur in practical problems J. Comput. Phys. 44
134–155.

Salvini S A and Shaw G J (1996) An evaluation of new NAG Library solvers for large sparse
unsymmetric linear systems NAG Technical Report TR2/96 , NAG Ltd, Oxford.

7. See Also

nag sparse nsym fac sol (f11dcc)
nag sparse nsym sort (f11zac)

8. Example

This example program reads in a sparse matrix A and calls nag sparse nsym fac to compute
an incomplete LU factorization. It then outputs the non-zero elements of both A and C =
L + D−1 + U − 2I.

The call to nag sparse nsym fac has lfill = 0, and pstrat = Nag SparseNsym CompletePiv, giving
an unmodified zero-fill LU factorization, with row pivoting for sparsity and column pivoting for
stability.

8.1. Program Text

/* nag_sparse_nsym_fac(f11dac) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.

[NP3491/6] 3.f11dac.5

nag sparse nsym fac NAG C Library Manual

*
* Mark 5, 1998.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <stdio.h>
#include <nagf11.h>

main()
{

double dtol;
double *a=0;

Integer *icol=0, *irow=0, *istr=0, *idiag=0, *ipivp=0, *ipivq=0;
Integer nnzc ;
Integer i, n, lfill, npivm;
Integer nnz;
Integer num;

Nag_SparseNsym_Fact milu;
Nag_SparseNsym_Piv pstrat;

char char_enum[20];

Vprintf("f11dac Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");

Vscanf("%ld%*[^\n]",&n);
Vscanf("%ld%*[^\n]",&nnz);
Vscanf("%ld%lf%*[^\n]",&lfill, &dtol);

Vscanf("%s%*[^\n]", char_enum);
if (!strcmp(char_enum, "NoPiv"))
pstrat = Nag_SparseNsym_NoPiv;

else if (!strcmp(char_enum, "UserPiv"))
pstrat = Nag_SparseNsym_UserPiv;

else if (!strcmp(char_enum, "PartialPiv"))
pstrat = Nag_SparseNsym_PartialPiv;

else if (!strcmp(char_enum, "CompletePiv"))
pstrat = Nag_SparseNsym_CompletePiv;

else
{
Vprintf("Unrecognised string for pstrat enum representation.\n");
exit (EXIT_FAILURE);

}

Vscanf("%s%*[^\n]", char_enum);
if (!strcmp(char_enum, "ModFact"))
milu = Nag_SparseNsym_ModFact;

else if (!strcmp(char_enum, "UnModFact"))
milu = Nag_SparseNsym_UnModFact;

else
{
Vprintf("Unrecognised string for method enum representation.\n");
exit (EXIT_FAILURE);

}

num = 2*nnz;
istr = NAG_ALLOC(n+1, Integer);
idiag = NAG_ALLOC(n, Integer);
ipivp = NAG_ALLOC(n, Integer);
ipivq = NAG_ALLOC(n, Integer);
irow = NAG_ALLOC(num,Integer);
icol = NAG_ALLOC(num,Integer);
a = NAG_ALLOC(num,double);

if (!istr || !idiag || !ipivp || !ipivq || !irow || !icol || !a)

3.f11dac.6 [NP3491/6]

f11 – Sparse Linear Algebra f11dac

{
Vprintf("Allocation failure\n");
exit (EXIT_FAILURE);

}

/* Read the matrix a */

for (i = 1; i <= nnz; ++i)
Vscanf("%lf%ld%ld%*[^\n]",&a[i-1], &irow[i-1],&icol[i-1]);

/* Calculate incomplete LU factorization */

f11dac(n, nnz, &a, &num, &irow, &icol, lfill, dtol, pstrat, milu,
ipivp, ipivq, istr, idiag, &nnzc, &npivm, NAGERR_DEFAULT);

/* Output original matrix */

Vprintf(" Original Matrix \n n = %6ld\n",n);
Vprintf(" nnz = %6ld\n",nnz);

for (i = 1; i <= nnz; ++i)
Vprintf("%8ld%16.6e%8ld%8ld\n",i,a[i-1],irow[i-1],icol[i-1]);

Vprintf("\n");

/* Output details of the factorization */

Vprintf(" Factorization \n n = %6ld\n",n);
Vprintf(" nnz = %6ld\n",nnzc);
Vprintf(" npivm = %6ld\n",npivm);

for (i = nnz + 1; i <= nnz + nnzc; ++i)
Vprintf("%8ld%16.6e%8ld%8ld\n",i,a[i-1],irow[i-1],icol[i-1]);

Vprintf("\n i ipivp[i-1] ipivq[i-1] \n"); /* */

for (i = 1; i <= n; ++i)
Vprintf("%10ld%10ld%10ld\n",i,ipivp[i-1],ipivq[i-1]);

NAG_FREE(istr);
NAG_FREE(idiag);
NAG_FREE(ipivp);
NAG_FREE(ipivq);
NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);
exit(EXIT_SUCCESS);

}

8.2. Program Data

f11dac Example Program Data
4 n
11 nnz
1 0.0 lfill, dtol
CompletePiv pstrat
UnModFact milu
1. 1 2
1. 1 3

-1. 2 1
2. 2 3
2. 2 4
3. 3 1

-2. 3 4
1. 4 1

-2. 4 2
1. 4 3
1. 4 4 a[i-1], irow[i-1], icol[i-1], i=1,...,nnz

[NP3491/6] 3.f11dac.7

nag sparse nsym fac NAG C Library Manual

8.3. Program Results

f11dac Example Program Results
Original Matrix
n = 4
nnz = 11

1 1.000000e+00 1 2
2 1.000000e+00 1 3
3 -1.000000e+00 2 1
4 2.000000e+00 2 3
5 2.000000e+00 2 4
6 3.000000e+00 3 1
7 -2.000000e+00 3 4
8 1.000000e+00 4 1
9 -2.000000e+00 4 2
10 1.000000e+00 4 3
11 1.000000e+00 4 4

Factorization
n = 4
nnz = 11
npivm = 0

12 1.000000e+00 1 1
13 1.000000e+00 1 3
14 3.333333e-01 2 2
15 -6.666667e-01 2 4
16 -3.333333e-01 3 2
17 5.000000e-01 3 3
18 6.666667e-01 3 4
19 -2.000000e+00 4 1
20 3.333333e-01 4 2
21 1.500000e+00 4 3
22 -3.000000e+00 4 4

i ipivp[i-1] ipivq[i-1]
1 1 2
2 3 1
3 2 3
4 4 4

3.f11dac.8 [NP3491/6]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

